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A B S T R A C T

In aquatic environments, Cd contamination is a great concern because this non-essential metal presents risks
both for wildlife and human health. Data about the concentration and transfer of Cd in Patagonian and Antarctic
aquatic food webs are crucial for assessing the impacts of this element in pristine ecosystems. Consequently, the
concentration of Cd was measured in thirty-two species collected in the 2014 austral summer from two locations
of the Western Patagonia and two locations of the Antarctic Peninsula. The main objective of this work was to
assess the relationship between Cd concentration and trophic level determined by δ15N. In the studied trophic
positions, Cd showed a positive relationship between concentration and trophic level, which suggests bio-
magnification of this element in macroinvertebrates. However, there was a significant dilution when higher
trophic organisms were considered.

Cadmium (Cd) is commonly in the Earth's crust but diverse an-
thropogenic activities (e.g. metallurgy, electroplating, paints, combus-
tion of coal and oil), erosion and volcanos (Kakkar and Jaffery, 2005)
can contaminate local environments, leading to detrimental effects in
wildlife and humans (Eisler, 1985). It is a non-essential element with no
biological function and is classified as one of the most hazardous metals
(Ravera, 1984) because of its potential for bioaccumulation and toxicity
to aquatic organisms (Bargagli et al., 1996). Some recent evidence
suggests possible biomagnification of Cd in marine food webs (Cheung
and Wang, 2008; Majer et al., 2014), which depends on site and species
(Ikemoto et al., 2008; Zeng et al., 2013).

Both Patagonia and Antarctica are among the most pristine places
left on the planet, however both are susceptible to the impacts of global
and local anthropogenic activities (Commendatore and Esteves, 2007;
Bargagli, 2008). Through atmospheric transport and deposition these
remote areas receive a suite of persistent pollutants originally used and
released considerable distances away (Lambert et al., 1990; Smichowski
et al., 2006). Considering the increase in population and industrial
development in countries in the Southern Hemisphere, there is the
potential for greater contamination of these pristine environments with

organic and inorganic contaminants (Celis et al., 2015). Some marine
organisms tend to accumulate high concentrations of metals, thus
posing a risk the health of consumers, including humans (Primost et al.,
2017). It is well known that Cd can cause deleterious effects in fish,
wildlife, and humans (Eisler, 1985). To understand the impact of
human activities on the biogeochemical cycle of Cd, it is necessary to
assess its levels in remote and relatively unpolluted areas.

By studying the trophodynamics (the way a chemical moves
through different trophic levels), the concentration of a metal can in-
crease (biomagnification), decrease (biodilution) or even present no
tendency (Luoma and Rainbow 2008). Stable nitrogen isotope (δ15N)
analysis is a very useful tool to estimate the relative trophic position of
a consumer (Cabana and Rasmussen, 1994), and has been used globally
to determine whether contaminants biomagnify (Walters D. et al.,
2016). A positive relationship between a metal or organic compound
and δ15N indicates biomagnification, whereas a negative one indicates
biodilution (Borgå et al., 2012). Thus, it is possible to test the re-
lationship between δ15N and Cd concentration, and therefore, the
possible biomagnification of this element (Majer et al., 2014). Ac-
cording to Post (2002), δ15N value is a direct indicator of trophic levels
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of consumers, being positive and significant the correlation between
these variables. The comparison between chemical concentrations and
trophic levels through the use of stable N isotopes can improve our
understanding of biological phenomena in aquatic environments and
possible human exposure through diet, an issue that has received spe-
cial attention during the last decades (Luoma and Rainbow, 2008;
Lavoie et al., 2013; Walters et al., 2016).

From Western Chilean Patagonia (Sector 1, Fig. 1), species of
macroinvertebrates and fishes were collected near the mouth of the
Marchant River (44°5′S, 73°5′W) and Yalac Island (44°01′S, 73°14′W) in
February 2014. From the Antarctic Peninsula (Sector 2), species of
macroinvertebrates, fishes and birds were collected at Paradise Bay
(64°51′S, 62°54′W), whereas species of macroinvertebrates and birds
were sampled at Cape Shirreff (62°28′S, 60°46′W), South Shetland Is-
lands. Before collecting samples, a permit was given by the Chilean
Antarctic Institute (INACH) to carry out the field campaign. The sam-
ples of aquatic invertebrates were obtained using a van Veen grab or by
Scuba diving. Soft tissues of mollusks were extracted, whereas the
whole body was retained for other macroinvertebrates. Fishes were
captured using a harpoon and nets, anesthetized with 5% benzocaine
(BZ-20®, Veterquimica), euthanized through spinal severance, and then
sampled for muscle tissue. All specimens were stored at −20 °C until
analyzed in the laboratory.

Samples were freeze-dried until dry masses were constant and then
homogenized into a fine powder using a glass mortar and pestle pre-
cleaned with 2% Conrad solution (Merck) for 24 h, washed with deio-
nized water and HCl 1M and rinsed with distilled water (Van Wyk et al.,
2001). According to availability, sub-samples between 0.02 and 0.45 g
of the material were subjected to microwave digestion with high purity
grade (GR) nitric acid, hydrochloric acid, and perchloric acid. Cd was
quantified using electrothermal atomic absorption spectrometry (ET-
AAS) ZEEnit 60 (Analytik Jena, equipped with Zeeman-effect BG cor-
rection system) at the Radioisotopes Lab of the Biophysics Institute,

University of Rio de Janeiro (Brazil). The detection limit was
0.003 μg g−1 d.w. All measurements were done in triplicate and re-
sulting values were averaged. Quality control included certified re-
ference materials Dolt-4 (dogfish liver), Dorm-3 and Dorm-4 (fish
protein) from National Research Council of Canada to test the accuracy
of the method. Recoveries from certified materials were always be-
tween 90 and 110%.

Stable N isotopes were analyzed using an elemental mass spectro-
meter Costech 4010 interfaced with Delta XP at the Stable Isotope in
Nature Laboratory, University of New Brunswick (Canada) and reported
as delta (δ) values in parts per thousand (‰). Two standards were used
as reference materials: atmospheric nitrogen (N2) and methylene (CH2),
both certified by the International Atomic Energy Agency (IAEA) for
isotopes (Logan et al., 2008; Wassenaar and Hendry, 2000). Ad-
ditionally, two certified standards of commercially available elements,
acetinilide and nicotinamide, were used. Replicates of each 10th sample
were analyzed, and the accuracy was 0.14 ± 0.14‰ for δ15N. Relative
standard deviation and the agreement between observed and certified
concentrations were lower than 10% for the CRMs, while blanks
were<0.2% of the mean sample signal.

The biomagnification of Cd was examined using trophic level (TL)
calculated with the following equation (Lavoie et al., 2013):
TLconsumer= (δ15Nconsumer− δ15Nbaseline)/Δ15N+ λ, where λ is the
trophic level of the baseline organism (being 2 for primary consumers),
δ15Nconsumer and δ15Nbaseline are the values as part per thousand (‰) of
a given consumer and the baseline organism, respectively. A trophic
discrimination factor (Δ15N) of 3.4‰ was used for aquatic organisms
(Jardine et al., 2006; Borgå et al., 2012).

Cd concentrations varied widely across species and locations (from
0.0014 to 28.10 μg g−1) (Table 1). From the Chilean Western Patagonia
coast, the species with the highest Cd concentration were the common
limpet Nacella magellanica (5.13 μg g−1) from Yalac Island, and the
carnivorous sea star Stichaster striatus (3.98 μg g−1) from Marchant

Fig. 1. Locations of study marine food webs in Chilean Western Patagonia (Sector 1) and Antarctic Peninsula area (Sector 2).
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River Mouth. In contrast, the species with the lowest Cd levels were the
carnivorous rock bass Paralabrax humeralis (0.0014 μg g−1) from Yalac
Island, and the benthopelagic predator fish Merluccius australis
(0.002 μg g−1) from Marchant River Mouth. From the Antarctic Pe-
ninsula, the species with the highest Cd concentration was the carni-
vorous starfish Odontaster validus (28.10 μg g−1) from Cape Shirreff,
and the predatory and scavenger starfish Diplasterias brucei
(7.58 μg g−1) from Paradise Bay. In contrast, the species with the lowest
Cd levels was the seabird skua Catharacta maccormicki (0.021 μg g−1)
from Cape Shirreff, and the carnivore fish Trematomus hansoni
(0.0045 μg g−1) from Paradise Bay. Our Cd levels found in soft tissues
of Nacella concinna were higher (17.73 μg g−1 at Cape Shirreff) and
similar (5.08 μg g−1 at Paradise Bay) to those reported previously in the
same species (5.04 μg g−1) from the same area (Ahn et al., 2002),

Cd levels in macroinvertebrates from the Antarctic Peninsula
(0.154–28.10 μg g−1) were consistently higher than those found in
Western Patagonia (0.043–5.13 μg g−1). Also, our Cd levels from
Antarctica were similar to the levels reported in benthic organisms from
the same area (0.20–15.6 μg g−1) (Szopińska et al., 2017) and those
from the Barents Sea, Northern Hemisphere (0.20–24 μg g−1) (Zauke
et al., 2003), although our Cd levels from Western Patagonia were
lower than those levels. This is indicative of the natural enrichment of
Cd and others metals (such as Cu) in polar food webs, a phenomena
typically occurring in Antarctica (Sanchez-Hernandez, 2000; Grotti
et al., 2008). The concentrations of Cd in macroinvertebrates from
Paradise Bay and Cape Shirreff are higher than those reported in surface
sediments (0.1–0.9 μg g−1) of different Antarctic sites (Negri et al.,
2006; Ianni et al., 2009; Ribeiro et al., 2011), thus providing evidence
of its bioaccumulation. Cd levels in sediments of the Western Patagonia

are not available, so it is not possible to do similar comparisons to Cd in
the organisms. A study reported non-detectable Cd concentrations in all
sediment samples from coastal systems of Eastern Patagonia (Primost
et al., 2017). Cd in uncontaminated marine sediments usually ranges
from 0.30 to 1 μg g−1 (Korte, 1983). The evidence indicates that the
physical and chemical changes occurring in sediments is an important
factor controlling Cd bioavailability, as this metal migrates into pore
water in the top oxidized sediment layer where many benthic animals
inhabit (Rosenthal et al., 1995).

In general, our Cd levels in marine fish muscle (0.0014–0.38 μg g−1)
were lower than those levels reported from the Northern Hemisphere
(0.15–0.60 μg g−1) (Elnabris et al., 2013; El-Moselhy et al., 2014) and
from subantarctic Kerguelen Island (0.14–0.65 μg g−1) (Jaffal et al.,
2011). Within Antarctica, Cd levels in our fish from Paradise Bay were
lower than values from Eastern Antarctica (0.1–0.2 μg g−1) (Sanchez-
Hernandez, 2000) and from Terra Nova Bay (0.03–0.04 μg g−1)
(Szopińska et al., 2017). In addition, fish muscle from the current study
had Cd levels that were much lower than the maximum permissible
level for human consumption (0.25 μg g−1) in Europe (Jaffal et al.,
2011), with the exception of Genypterus blacodes (0.38 μg g−1) from
Marchant River Mouth, which is a demersal commercial species. The
high Cd found in Genypterus blacodes is because demersal fish tend to
exhibit higher metals than fish living in the upper water column (e.g.
Merluccius australis, Salilota australis), which is explained as the con-
centrations of heavy metals are highest in the sediments and lowest in
the water, and metals enter the food chain via the feeding of benthic
animals (Yi et al., 2011). This finding supports the fact that the sedi-
ment is the major sink for trace element pollution, playing an important
role in element uptake by fish (Luoma and Bryan, 1978; Yi et al., 2011).

Table 1
Concentration (μg g−1 dry weight) of Cd, δ15N values (‰), and trophic level (TL) in animals of different locations from the Antarctic Peninsula area (AP) and Chilean
Western Patagonia coast (CP). Data presented as mean ± standard deviation. The species which were used as baseline are indicated with an asterisk.

Location Group Species N Sample δ15N TL Cd

Paradise Bay
(AP)

Macroinvertebrate Diplasterias brucei 2 Soft tissue 7.25 ± 0.01 2.86 ± 0.004 7.58 ± 2.21
Chorismus antarcticus 1 Soft tissue 7.60 2.97 6.77
Lyssianasid amphipod 3 Whole body 7.37 ± 0.30 2.90 ± 0.09 0.80 ± 0.27
Nacella concinna* 3 Soft tissue 5.06 ± 0.74 2.22 ± 0.22 5.08 ± 4.40
Euphausia superba 3 Whole body 5.83 ± 0.95 2.45 ± 0.28 0.26 ± 0.16
Haplocheira sp. 3 Whole body 6.78 ± 0.02 2.73 ± 0.01 1.92 ± 0.26

Fish Harpagifer antarcticus 3 Muscle 11.55 ± 0.58 4.13 ± 0.17 0.006 ± 0.0055
Trematomus bernacchii 1 Muscle 11.79 4.20 0.007
Trematomus hansoni 2 Muscle 11.64 ± 0.81 4.16 ± 0.24 0.0045 ± 0.0002

Seabird Catharacta maccormicki 3 Feather 11.38 ± 0.87 4.08 ± 0.26 0.042 ± 0.018
Pygoscelis papua 3 Feather 10.49 ± 4.40 3.82 ± 1.29 0.078 ± 0.038

Cape Shirreff
(AP)

Macroinvertebrate Diplasteria brucei* 1 Soft tissue 6.59 1.03 1.03
Macroptychaster sp. 1 Soft tissue 6.62 0.07 0.154
Nacella concinna 3 Soft tissue 8.54 ± 0.09 0.63 ± 0.03 17.73 ± 9.54
Odontaster validus 1 Soft tissue 7.91 0.45 28.10

Seabird Pygoscelis antarctica 1 Feather 15.66 2.73 0.036
Pygocelis papua 1 Feather 12.51 1.08 0.109
Catharacta maccormicki 3 Feather 13.88 ± 2.58 2.21 ± 0.76 0.021 ± 0.005

Marchant River M.
(CP)

Macroinvertebrate Stichaster striatus 3 Soft tissue 12.92 ± 0.29 3.68 ± 0.09 3.98 ± 0.53
Aulacomya ater 3 Soft tissue 9.69 ± 0.49 2.73 ± 0.14 1.59 ± 1.54
Hemigrapsus granulosus* 3 Whole body 8.16 ± 0.97 2.28 ± 0.28 0.302 ± 0.089
Loxechinus albus 3 Soft tissue 10.54 ± 0.70 2.98 ± 0.20 0.528 ± 0.056

Fish Eleginops maclovinus 3 Muscle 13.58 ± 0.52 3.87 ± 0.15 0.053 ± 0.078
Genypterus blacodes 3 Muscle 16.29 ± 0.25 4.67 ± 0.07 0.38 ± 0.47
Macruronus magallanicus 1 Muscle 12.56 0.02 0.016
Merluccius australis 1 Muscle 14.69 0.002 0.002
Salilota australis 1 Muscle 16.14 0.004 0.004
Schroederichthys chilensis 2 Muscle 15.53 ± 0.43 4.44 ± 0.13 0.136 ± 0.153

Yalac Island
(CP)

Macroinvertebrate Chorus giganteus 3 Soft tissue 14.90 ± 0.59 4.02 ± 0.17 2.66 ± 1.35
Cocholepas concholepas 3 Soft tissue 12.65 ± 0.61 3.35 ± 0.18 0.043 ± 0.005
Fisurella sp. 3 Soft tissue 11.63 ± 0.33 3.06 ± 0.10 0.575 ± 0.144
Nacella magellanica 3 Soft tissue 11.53 ± 0.21 3.02 ± 0.06 5.13 ± 3.29
Cliona chilensis* 1 Soft tissue 9.93 2.55 2.56
Tegula atra 3 Soft tissue 10.62 ± 2.23 2.76 ± 0.66 4.63 ± 7.69

Fish Paralabrax humeralis 1 Muscle 16.17 4.39 0.0014
Panguipes chilensis 3 Muscle 16.39 ± 0.31 4.45 ± 0.09 0.0073 ± 0.002
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Our maximum Cd levels found in feathers of Pygoscelis papua at
Cape Shirreff were 6.4 times lower than those levels reported by
Metcheva et al. (2010) at Livingstone Island (0.50 μg g−1). In general,
Cd concentrations in bird feathers were lower than those found in
seabirds of the Northern Hemisphere (0.04–1.28 μg g−1) (Kim et al.,
1998; Agusa et al., 2005; Mansouri et al., 2012).

Regressions of log10[Cd] versus trophic level from different food
webs (Figs. 2 and 3) showed differences in Cd fate depending on the
organisms examined. Within macroinvertebrates from the two sites in
Western Patagonia (Fig. 2A), only those from Marchant River Mouth
showed a significant positive relationship between Cd concentration
and trophic level despite both sites exhibited a similar range in trophic
level (Table 1, Fig. 2). Macroinvertebrates from both locations on the

Antarctic Peninsula area showed a significant positive relationship be-
tween Cd concentration and trophic level (Fig. 3A). The slopes of these
Cd versus TL relationships within macroinvertebrates were significantly
different (Location x TL, p=0.08) across locations but the positive
slopes at 3 of 4 sites provides some evidence that this element can
biomagnify within lower levels of the food web. The Cd biomagnifi-
cation observed herein is in agreement with the results previously re-
ported by Majer et al. (2014) for a benthic food web from Admiralty
Bay (King George Island, Antarctica).

Some of these inconsistent relationships among locations may be
due to the differences in trophic levels sampled; more specifically the
range in TL of macroinvertebrates from Cape Shirreff was much smaller
(with a low sample size) when compared to the range of TLs sampled at

Fig. 2. Relationships between Cd concentration in organisms sampled at different locations of the Western Patagonia: Marchant River Mouth and Yalac Island) and
their trophic level. (A) a simpler food web (data of macroinvertebrates); (B) data of fishes; (C) a more diverse food web (data of the whole food web).

Fig. 3. Relationships between Cd concentrations in organisms sampled at different locations of the Antarctic Peninsula area: Paradise Bay and Cape Shirreff. (A) a
simpler food web (data of macroinvertebrates); (B) data of fishes; (C) a more diverse food web (data of the whole food web).
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other sites. In contrast to the macroinvertebrate analyses, regressions of
log Cd versus TL for fishes or fishes and birds showed no significant
relationships within any locations; however, it is necessary to remark
that sample sizes at Cape Shirreff and Yalac Island were low (Figs. 2B,
3B).

For each of the whole food webs from Antarctica and Patagonia,
there was a significant biodilution of Cd across trophic levels as evi-
denced by the significant negative slopes of log Cd versus TL, and these
slopes were not significantly different (Location x TL, p=0.66) with a
common slope of −0.81 ± 0.14 (Figs. 2C, 3C). A probable explanation
of Cd biodilution across food webs is linked to a greater elimination rate
of Cd in fish and birds (Nfon et al., 2009), than those of benthic or-
ganisms (Wang, 2002). Similarly, Signa et al. (2017) also had observed
biodilution of Cd in fishes of the Mediterranean Sea and other places in
the Northern Hemisphere (Campbell et al., 2005; Mathews and Fisher,
2008). Our results clearly showed that the trophic transfer of this metal
is highly dependent on the species considered.

The present study revealed that there is biomagnification of Cd in
macroinvertebrates. However, there was a significant dilution when
higher trophic organisms (like fishes and birds) were considered. It is
evidenced as the slopes of the linear regressions concerning a simpler
food web were similar between the Antarctic locations, and both dif-
fered from the values found at Patagonia. No differences were detected
between Antarctica and Patagonia considering a more diverse food
web.

In conclusion the results from these marine food webs in remote
areas of Patagonia and Antarctica showed highest levels of Cd in
macroinvertebrates, but generally lower than similar species from
elsewhere. Biomagnification and biodilution of Cd were noted within
macroinvertebrate and whole food webs, respectively. The current risk
to human health due to the consumption of Cd-contaminated seafood
appears low. This study provides valuable baseline data on Cd con-
centrations at sites considered to be among the most pristine globally
and results suggest that lower-trophic-level organisms would be most
affected by increasing Cd levels from greater development in these re-
gions.
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